博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
poj2975 Nim 胜利的方案数
阅读量:6602 次
发布时间:2019-06-24

本文共 3331 字,大约阅读时间需要 11 分钟。

Nim
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5545   Accepted: 2597

Description

Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.

A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.

Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:

111 1011 1101

There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.

Input

The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.

Output

For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.

Sample Input

37 11 1321000000000 10000000000

Sample Output

30
/*poj2975 Nim 胜利的方案数nim游戏是异或和不为0的时候,是必胜的。例:先手人员可以先拿一个,然后异或和为0,然后对手拿多少,你就拿多少。从而达到必胜的。1011     ------>      10101010     拿一个       1010这个是求总共有多少种必胜的方法,开始想的是通过SG值来计算,但是数范围太大结果还是从nim的原理上分析如果我们从一个人那个取走一部分,从而使剩下的所有的异或和为0那么取的 那一堆的数量    ta[i] > 剩下其它碓的异或和所以可以依靠这个来判断胜利的方法数量。hhh-2016-08-01 20:16:14*/#include 
#include
#include
#include
#include
#include
#include
using namespace std;#define lson (i<<1)#define rson ((i<<1)|1)typedef long long ll;using namespace std;const ll mod = 1e9 + 7;const ll INF = 0x3f3f3f3f;const int maxn = 1000100;ll ta[maxn];int main(){ int n ; while(scanf("%d",&n) != EOF && n) { ll ans = 0; int tans = 0; for(int i = 0;i < n;i++) { scanf("%I64d",&ta[i]); ans ^= ta[i]; } for(int i = 0;i < n;i++) { if( (ans ^ ta[i]) < ta[i]) tans ++; } printf("%d\n",tans); } return 0;}

  

 

转载于:https://www.cnblogs.com/Przz/p/5757371.html

你可能感兴趣的文章
Windows 上 Caffe开发环境搭建
查看>>
zigbee学习之ADC采集芯片内部的温度
查看>>
ECharts 英雄联盟能力分析雷达图及支付宝信用评分雷达图
查看>>
react-native笔记(flexbox)
查看>>
《CSAPP》读书笔记 -- 第2章:浮点数原理(小专题)
查看>>
pow算法思考
查看>>
flutter自定义View(CustomPainter) 之 canvas的方法总结
查看>>
JavaScript深入理解之undefined与null
查看>>
如何使用Python编写vim插件
查看>>
论良好习惯的重要性
查看>>
node项目错误处理与日志
查看>>
前端日刊君来也
查看>>
OC 链式编程实战(封装NSMutableAttributedString)
查看>>
python中对文件的操作
查看>>
mysql数据库理论与实战
查看>>
面试题总结-Android部分
查看>>
从SpringMvc源码分析其工作原理
查看>>
上海下雨了,不来点函数防抖、节流压压惊?
查看>>
安卓开发框架系列开篇
查看>>
人民日报:不能让算法决定内容 否则价值取向跑偏
查看>>